Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract From >1000 orbits of HST imaging, we present deep homogeneous resolved star color–magnitude diagrams that reach the oldest main-sequence turnoff and uniformly measured star formation histories (SFHs) of 36 dwarf galaxies (−6 ≥MV≥ −17) associated with the M31 halo, and for 10 additional fields in M31, M33, and the Giant Stellar Stream. From our SFHs, we find: (i) The median stellar age and quenching epoch of M31 satellites correlate with galaxy luminosity and galactocentric distance. Satellite luminosity and present-day distance from M31 predict the satellite quenching epoch to within 1.8 Gyr at all epochs. This tight relationship highlights the fundamental connection between satellite halo mass, environmental history, and star formation duration. (ii) There is no difference between the median SFH of galaxies on and off the great plane of Andromeda satellites. (iii) ~50% of our M31 satellites show prominent ancient star formation (>12 Gyr ago) followed by delayed quenching (8–10 Gyr ago), which is not commonly observed among the MW satellites. (iv) A comparison with TNG50 and FIRE-2 simulated satellite dwarfs around M31-like hosts shows that some of these trends (dependence of SFH on satellite luminosity) are reproduced in the simulations while others (dependence of SFH on galactocentric distance, presence of the delayed-quenching population) are weaker or absent. We provide all photometric catalogs and SFHs as High-Level Science Products on MAST.more » « lessFree, publicly-accessible full text available January 28, 2026
-
ABSTRACT Observational studies are finding stars believed to be relics of the earliest stages of hierarchical mass assembly of the Milky Way (i.e. proto-galaxy). In this work, we contextualize these findings by studying the masses, ages, spatial distributions, morphology, kinematics, and chemical compositions of proto-galaxy populations from the 13 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. Our findings indicate that proto-Milky Way populations: (i) can have a stellar mass range between 1 × 108 < M⋆ < 2 × 1010 [M⊙], a virial mass range between 3 × 1010 < M⋆ < 6 × 1011 [M⊙], and be as young as 8 ≲ Age ≲ 12.8 [Gyr] (1 ≲ z ≲ 6); (ii) are pre-dominantly centrally concentrated, with $$\sim 50~{{\ \rm per\ cent}}$$ of the stars contained within 5–10 kpc; (iii) on average show weak but systematic net rotation in the plane of the host’s disc at z = 0 (i.e. 0.25 ≲ 〈κ/κdisc〉 ≲ 0.8); (iv) present [α/Fe]-[Fe/H] compositions that overlap with the metal-poor tail of the host’s old disc; and (v) tend to assemble slightly earlier in Local Group-like environments than in systems in isolation. Interestingly, we find that $$\sim 60~{{\ \rm per\ cent}}$$ of the proto-Milky Way galaxies are comprised by 1 dominant system (1/5 ≲M⋆/M⋆, proto-MilkyWay≲ 4/5) and 4–5 lower mass systems (M⋆/M⋆, proto-MilkyWay≲ 1/10); the other $$\sim 40~{{\ \rm per\ cent}}$$ are comprised by 2 dominant systems and 3–4 lower mass systems. These massive/dominant proto-Milky Way fragments can be distinguished from the lower mass ones in chemical-kinematic samples, but appear (qualitatively) indistinguishable from one another. Our results could help observational studies disentangle if the Milky Way formed from one or two dominant systems.more » « less
-
Abstract The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy,β, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo.more » « less
-
null (Ed.)ABSTRACT We present an analysis of the intracluster light (ICL) in the Frontier Field Cluster MACS J1149.5+2223 (z = 0.544), which combines new and archival Hubble WFC3/IR imaging to provide continuous radial coverage out to 2.8 Mpc from the brightest cluster galaxy (BCG). Employing careful treatment of potential systematic biases and using data at the largest radii to determine the background sky level, we reconstruct the surface brightness profile out to a radius of 2 Mpc. This radius is the largest to which the ICL has been measured for an individual cluster. Within this radius, we measure a total luminosity of 1.5 × 1013 L⊙ for the BCG plus ICL. From the profile and its logarithmic slope, we identify the transition from the BCG to ICL at r ∼ 70 kpc. Remarkably, we also detect an apparent inflection in the profile centred in the 1.2–1.7 Mpc (0.37–0.52 r200m) radial bin, a signature of an infall caustic in the stellar distribution. Based upon the shape and strength of the feature, we interpret it as potentially being at the splashback radius, although the radius is smaller than theoretical predictions. If this is the splashback radius, then it is the first such detection in the ICL and the first detection of the splashback radius for an individual cluster. Similar analyses should be possible with the other Frontier Field clusters, and eventually with clusters observed by the Euclid and Roman missions.more » « less
-
Abstract We present the lifetime star formation histories (SFHs) for six ultrafaint dwarf (UFD;MV> − 7.0, ) satellite galaxies of M31 based on deep color–magnitude diagrams constructed from Hubble Space Telescope imaging. These are the first SFHs obtained from the oldest main-sequence turnoff of UFDs outside the halo of the Milky Way (MW). We find that five UFDs formed at least 50% of their stellar mass byz= 5 (12.6 Gyr ago), similar to known UFDs around the MW, but that 10%–40% of their stellar mass formed at later times. We uncover one remarkable UFD, Andxiii, which formed only 10% of its stellar mass byz= 5, and 75% in a rapid burst atz∼ 2–3, a result that is robust to choices of underlying stellar model and is consistent with its predominantly red horizontal branch. This “young” UFD is the first of its kind and indicates that not all UFDs are necessarily quenched by reionization, which is consistent with predictions from several cosmological simulations of faint dwarf galaxies. SFHs of the combined MW and M31 samples suggest reionization did not homogeneously quench UFDs. We find that the least-massive MW UFDs (M*(z= 5) ≲ 5 × 104M⊙) are likely quenched by reionization, whereas more-massive M31 UFDs (M*(z= 5) ≳ 105M⊙) may only have their star formation suppressed by reionization and quench at a later time. We discuss these findings in the context of the evolution and quenching of UFDs.more » « less
-
Abstract We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf (UFD) galaxies Pegasus III (Peg III) and Pisces II (Psc II), two of the most distant satellites in the halo of the Milky Way (MW). We measure the structure of both galaxies, derive mass-to-light ratios with newly determined absolute magnitudes, and compare our findings to expectations from UFD-mass simulations. For Peg III, we find an elliptical half-light radius of ( pc) and for Psc II, we measure (69 ± 8 pc) and . We do not find any morphological features that indicate a significant interaction between the two has occurred, despite their close separation of only ∼40 kpc. Using proper motions (PMs) from Gaia early Data Release 3, we investigate the possibility of any past association by integrating orbits for the two UFDs in an MW-only and a combined MW and Large Magellanic Cloud (LMC) potential. We find that including the gravitational influence of the LMC is crucial, even for these outer-halo satellites, and that a possible orbital history exists where Peg III and Psc II experienced a close (∼10–20 kpc) passage about each other just over ∼1 Gyr ago, followed by a collective passage around the LMC (∼30–60 kpc) just under ∼1 Gyr ago. Considering the large uncertainties on the PMs and the restrictive priors imposed to derive them, improved PM measurements for Peg III and Psc II will be necessary to clarify their relationship. This would add to the rare findings of confirmed pairs of satellites within the Local Group.more » « less
An official website of the United States government
